U.S. Trade and Industry: A Glimpse Under the Hood

Michael Sposi
May 12, 2017
Dallas, TX

The views expressed here are those of the author and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System. Any secondary distribution of this material is strictly prohibited. May be quoted with appropriate attribution to the author.
Outline

• Breaking down U.S. trade
 • By partner
 • By types of goods

• Value-added measures of trade
 • Re-examine the trade linkages

• A historical perspective of industry in the U.S.
 • Composition of U.S. employment
 • Driving forces
Top U.S. Import Partners and Patterns

Source: Haver Analytics
Composition of U.S. Goods Imports

- Food, feeds & beverages
- Industrial supplies & materials
- Capital goods ex automotives
- Automotive vehicles, parts & engines
- Nonfood consumer goods ex automotives
- Other

Source: Haver Analytics
Composition of U.S. Trade Deficit

Source: Haver Analytics
What is “value-added” trade?

- Classic example: the iPhone.
- China assembles iPhones and exports them to the U.S.
 - China imports components from various sources: Japan, Korea, Germany, the U.S., etc.
- Gross value of export is accredited to China.
 - But China does not create all of the value.
- Repatriate the contribution of each source in the global supply chain to the final value.
- Similar for much of the trade between the U.S. and Mexico, specifically in autos and parts.
Measuring trade flows in global supply chains: value-added approach

A U.S. consumer purchases an iPhone for $500: How is the value-added distributed?

Recording the transaction in gross terms.

Implied gross trade deficit b/w U.S. and China: **$169**.

Implied gross trade deficit b/w U.S. and ROW: **$0**.
Measuring trade flows in global supply chains: value-added approach

A U.S. consumer purchases an iPhone for $500: How is the value-added distributed?

Recording the transaction in gross terms. Trade in intermediate goods gets repatriated to original source.
Measuring trade flows in global supply chains: value-added approach

A U.S. consumer purchases an iPhone for $500: How is the value-added distributed?

Recording the transaction in gross terms. Trade in intermediate goods gets repatriated to original source.
Measuring trade flows in global supply chains: value-added approach

A U.S. consumer purchases an iPhone for $500: How is the value-added distributed?

Recording the transaction in gross terms. Remaining value of the iPhone sale covers distribution, R&D, and other value-added by Apple.

<table>
<thead>
<tr>
<th>USA</th>
<th>CHN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor, camera, etc.</td>
<td>$162</td>
</tr>
<tr>
<td>Memory and audio</td>
<td>$11</td>
</tr>
<tr>
<td>Sale to consumer</td>
<td>$500</td>
</tr>
<tr>
<td>Assembled product</td>
<td>$180</td>
</tr>
<tr>
<td>Processor, camera, etc.</td>
<td>$162</td>
</tr>
<tr>
<td>Memory and audio</td>
<td>$11</td>
</tr>
<tr>
<td>$320</td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td>$7</td>
</tr>
</tbody>
</table>
Measuring trade flows in global supply chains: value-added approach

A U.S. consumer purchases an iPhone for $500: How is the value-added distributed?

Recording the transaction in gross terms.

Recording the transaction in value-added terms.

Implied gross trade deficit b/w U.S. and China: $169

Implied gross trade deficit b/w U.S. and ROW: $0.

Implied value-added trade deficit b/w U.S. and China: $7

Implied value-added trade deficit b/w U.S. and ROW: $162.
Value-added trade figures restate U.S. bilateral trade linkages

• U.S. tends to concentrate more on upstream production in the global supply chain.

• China and Mexico specialize more on downstream production.

• The U.S. bilateral trade deficits with China and Mexico are smaller when measured in terms of value added.

• Paints a new picture when thinking about currency wars.
 • A devaluation makes imports more expensive.
 • A country with small value added will gain very little from devaluing.
Value-added trade shares restate U.S. bilateral trade linkages

Source: OECD Trade in Value Added database
Value-added trade figures restate U.S. bilateral trade deficits

Gross net export shares

Value-added net export shares

Source: OECD Trade in Value Added database
Value-added trade figures restate U.S. bilateral manufacturing trade deficits

Source: OECD Trade in Value Added database
De-industrialization: A historical perspective

- The decline in manufacturing, or industrial production, is part of a process known as “structural transformation.”
- The share of employment in industrial sectors has been declining since the 1960s: Why?
 - Technology: advanced in productivity in manufacturing processes.
 - Demand: Increased demand for services (health care, education, etc.)
 - Trade: Increased specialization in global supply chains.
Historical growth and structural transformation in the U.S.

Changes in private consumption expenditures in the U.S.

Source: Bureau of Economic Analysis
Prices of services in the U.S. grew faster than both agricultural and industrial prices.

Source: Bureau of Economic Analysis
Sectoral linkages: Changes in U.S. firms’ intermediate expenditures

Industrial productivity growth
pre-1980: 2.0% post-1980: 3.1%

Source: Bureau of Economic Analysis
De-industrialization: the U.S. is not alone

Japan’s industrialization process linked to trade

Industrial employment percentages

Asian Tigers’ industrialization and de-industrialization

Industrial employment percentages

China’s industrialization

Employment composition tied to GDP per capita

The decline in industrial activity

• Part of the economic growth process.
• Improved technology reduces the resources needed for production.
• Higher income and longer life-expectancy increases the demand for services.
• Globalization allows for specialization in the global supply chain.
 • The U.S. specializes more in service-intensive, upstream activities.