Volatility and Pass-through

David Berger1 \quad Joseph Vavra2

1Northwestern University
2University of Chicago and NBER

September 26, 2013
Introduction

- How will the macroeconomy respond to shocks or policy changes at some point in time?
 - If we want to answer, how much attention needs to be paid to microeconomic agents in the economy?
- Long-standing debate that arises in:
 - Investment, price-setting, consumption, employment
- Largely a model driven debate
- In this paper we provide "model-free" empirical evidence that correctly predicting aggregate dynamics requires looking at micro data
For this paper: focus on price-setting behavior of firms exporting to the US

In tradition of long literature, exploit price responses to exchange rate movements

Does pass-through vary across time and across firms?
Quick Overview

- Use simple idea to guide an empirical test:
 - If some firms are more "responsive" to shocks at some points in time:
 - Should have more disperse price changes
 - Should have higher exchange rate pass-through
 - Test for empirical relationship between price change dispersion and pass-through and find strong support:
 - Items with high price change dispersion have high pass-through
 - Pass-through is high during times of high price change dispersion
 - Try to control for every confounding covariate we can think of and show this empirical result is very robust

Berger & Vavra
Our positive relationship between price change dispersion and pass-through is pure empirical result.

But once we have the empirical result, we try to understand it:

- Build a model of exporting price-setters with various channels that affect price change dispersion and pass-through.
- Cannot explain our empirical results:
 - Heterogeneity in menu costs, calvo frequencies, import intensity, exchange rate volatility.
 - Heterogeneity in volatility or "volatility shocks".

Can explain our empirical results:

- Heterogeneity in markup elasticities or other forms of strategic complementarities.
Lots of Time-Variation in Price Change Dispersion

Why should we care?
Implications

- Model-free results:
 - Estimating aggregate pass-through without using evidence on micro dispersion overstates pass-through during low dispersion periods and underestimates it during high dispersion periods... by a lot

- Model-based results
 - Large literature studying "uncertainty" or "volatility" shocks
 - We find a strong relationship between dispersion and pass-through but can’t be explained by volatility shocks
 - Variable markup/Competition based explanations much more promising
Outline

- Organizing framework
- Empirical results
- Quantitative model
- Why we should care
Organizing framework: flexible prices

- Optimal price is:

$$p_i = \mu_i + mc_i(e_i, \eta_i)$$

gross markup (μ_i)

common dollar marginal cost (mc_i)

idiosyncratic cost (η_i)

- Taking total derivative gives:

$$\Delta p_i = -\Gamma_i(\Delta p_i - \Delta p) + \alpha_i \Delta e_i + \Delta \eta_i$$

with

$$\Gamma_{in} \equiv \frac{\partial \mu_i}{\partial (\Delta p_i - \Delta p)} \quad \text{and} \quad \alpha_i \equiv \frac{\partial mc_i}{\partial e_i}$$
Organizing framework: pass-through and variance

- Exchange rate pass-through

\[
\frac{\Delta p_i}{\Delta e_i} = \frac{\alpha_i}{1 + \Gamma_i}
\]

- Variance of prices

\[
var(\Delta p_i) = \left(\frac{\alpha_i}{1 + \Gamma_i}\right)^2 var(\Delta e_i) + \left(\frac{1}{1 + \Gamma_i}\right)^2 var(\Delta \eta_i)
\]

- Theory implies positive relationship between PT and variance: factors which increase pass-through ($\alpha \uparrow$ and $\Gamma \downarrow$) also increase variance

- Furthermore, will show α channel doesn’t explain our results
Data

- BLS IPP micro data underlying import price indices
- Product data from survey
 - Record various transaction details for particular items including price and country of origin
 - Over 10,000 price observations per month
 - Wide range of imports
- IMF exchange rate data
- Data on US and foreign CPI and US GDP
- All results have country-sector fixed effects
- Robust to lots of alternative sample selection so I won’t discuss
Benchmark Pass-through Measure

- How much of cumulated exchange rate movements are passed-through when an item adjusts?
- Let $\Delta c e_{i,t}$ be the cumulative change in exchange rate since last price adjustment

\[
\Delta p_{i,t} = \beta \Delta c e_{i,t} + Z'_{i,t} \gamma + \epsilon_{i,t}
\]

<table>
<thead>
<tr>
<th>Average medium-run pass-through</th>
<th>β</th>
<th>$se(\beta)$</th>
<th>t-stat</th>
<th>N_{obs}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.144</td>
<td>0.014</td>
<td>10.17</td>
<td>95284</td>
<td>0.067</td>
</tr>
</tbody>
</table>
Want to test if there is a relationship between price change dispersion and pass-through

Measuring dispersion in the data:

- **Item-level dispersion:**
 - Fix item j and calculate dispersion of all that item’s price changes across time:
 - $DL_j = disp(\Delta p_{i,t} \mid i = j)$

- **Month-level dispersion:**
 - Fix month k, and calculate dispersion across the price changes of all items in that month:
 - $DM_k = disp(\Delta p_{i,t} \mid t = k)$
Let $DL_i = std(\Delta p_i)$ be the standard deviation of item i’s price changes (conditional on adjusting)

Split sample into quintiles by XSD and within each quintile, regress

$$\Delta p_{i,t} = \beta^j \Delta c e_{i,t} + Z_{i,t}^j \gamma + \epsilon_{i,t}$$
Item-Level Dispersion and Pass-Through

Berger & Vavra

Passthrough
Month-Level Dispersion

- Same relationship in time-series using month-level dispersion?
- For each month, calculate IQR of price changes across items
- Divide time-series quintiles by IQR:
Month-Level Dispersion and Pass-Through

Berger & Vavra

Passthrough
A Mechanical Relationship?

- Flex price benchmark:

\[\Delta p_{i,t} = \beta^j \Delta e_{i,t} + \epsilon_{i,t} \]

\[\Rightarrow \]

\[\text{var} (\Delta p_{i,t}) = \left(\beta^j \right)^2 \text{var} (\Delta e_{i,t}) + \text{var} (\epsilon_{i,t}) \]

- What if only \(\beta \) (e.g. import intensity) varies across firms?
 - \(\text{var} (\Delta e_{i,t}) \) is observable
 - Average \(\text{var} (\Delta p_{i,t}) \), \(\beta \) observable
 - \(\text{var} (\epsilon_{i,t}) \) constant across firms (by assumption)
 - Use observables to back out \(\text{var} (\epsilon_{i,t}) \)
What Determines Individual Price Dynamics?

- If the only thing that varies across firms is β, should then be able to vary β and generate observed item-level dispersion

$$\text{var} (\Delta p_{i,t}) = \left(\beta^j\right)^2 \text{var} (\Delta e_{i,t}) + \text{var} (\epsilon_{i,t})$$

<table>
<thead>
<tr>
<th>Quintile</th>
<th>β^j</th>
<th>Actual $\text{var} (\Delta p)$</th>
<th>Implied $\text{var} (\Delta p)$</th>
<th>$\text{var} (\Delta e)$</th>
<th>$\text{var} (\epsilon)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.021</td>
<td>3.14e-4</td>
<td>1.83003e-2</td>
<td>6.25e-4</td>
<td>1.83e-2</td>
</tr>
<tr>
<td>5</td>
<td>.235</td>
<td>5.33e-2</td>
<td>1.83345e-2</td>
<td>6.25e-4</td>
<td>1.83e-2</td>
</tr>
</tbody>
</table>

- Price change variance almost entirely determined by idiosyncratic $\text{var} (\epsilon_{i,t})$ not $\text{var} (\Delta e_{i,t})$

- Heterogeneous β can explain only .065% of observed relationship
Dispersion or Frequency?

- Run regressions split by DI and $freq$
Product type

Item-Level Standard Deviation: Quintiles

- Differentiated Products
- Other Products

Pass-Through
Robustness

- Don’t have time to talk about them all, but results very robust:
- Run more structured specification that allows for more controls:
 - Control for item-frequency, aggregate frequency, product substitution, time-trends, seasonality, business cycle measures
- Rerun results for alternative sample selection and exchange rate measures:
 - OECD countries instead of all-countries
 - Differentiated/Manufactured items instead of all items
 - Trade weighted exchange rates
 - Rerun time-series results using aggregate data
- Quantile regressions and trimmed outliers in OLS
- Placebo regressions with #obs, #changes
As pure empirical statement, we’ve shown looking at micro data on price dispersion is important for predicting pass-through, but...

What explains the positive relationship between pass-through and price dispersion? Is this really evidence for heterogeneous responsiveness?

Build a model to assess different possibilities. Heterogeneity in:

- Menu costs?
- Volatility?
- Import intensity?
- Responsiveness?
- Exchange rate volatility?
- "Common-ness" of shocks
Modeling Exchange Rate Pass-through

- Assess Calvo and Menu cost version of model in Gopinath and Itshkhoki (2010)
 - Firms face Kimball demand with elasticity σ and super-elasticity ε
 - $C_j = \left[1 - \varepsilon \ln \left(\frac{\sigma}{\sigma-1} \frac{P_j}{P}\right)\right]^{\sigma/\varepsilon}; \quad \Gamma = \frac{\varepsilon}{\sigma-1+\varepsilon \ln \left(\frac{\sigma x_j}{\sigma-1}\right)}$
 - Firm costs depend on idiosyncratic productivity A_j and exchange rate E
 - E follows random walk
 - $\log A_j = \rho_A + \sigma_A \epsilon_j$
 - Firm profits: $\Pi(P_j, A_j, P, E) = \left[P_j - \frac{W^{1-\alpha}(W^*)^\alpha}{A_j}\right] C_j$
 - Firms face menu costs of price adjustment κ or Calvo fairies
- Calibrate and solve model in standard ways - all our results robust to different calibrations
What Affects Pass-through?

- \(\Delta p_{i,t} = \beta \Delta e + \epsilon \) implies:

 \[
 \hat{\beta} = \frac{\text{cov}(\Delta p, \Delta e)}{\text{var}(\Delta e)} = \frac{\text{cov}(\beta \Delta e + \epsilon, \Delta e)}{\text{var}(\Delta e)} = \beta + \frac{\text{cov}(\epsilon, \Delta e)}{\text{var}(\Delta e)}
 \]

- With flex prices:

 \[
 \beta = \frac{\alpha}{1 + \Gamma}
 \]

- To increase pass-through:
 - Increase \(\alpha \) or lower \(\epsilon \) (and thus \(\Gamma \)).
 - Increase \(\kappa \) or lower \(\sigma_A \) since increases \(\text{cov}(\epsilon, \Delta e) \).
Matching the Cross-Item Dispersion Results

- Holding other parameters at baseline, vary menu costs, volatility and super elasticity and look at effects on MRPT, XSD and freq
Figure: Menu Cost Comparative Statics

\[\varepsilon \text{ (Markup Elasticity)} \]

\[\kappa \text{ (Menu Cost)} \]

\[\alpha \text{ (Import Intensity)} \]

\[\sigma_A \text{ (Idiosyncratic Volatility)} \]
Cross-Item dispersion results conclusion

- Variation in either ε or κ can match relationship between XSD and $MRPT$

- Only variation in ε generates (the empirically correct) $corr(freq, XSD) > 0$

- Therefore variation in responsiveness is best able to match cross-sectional facts
In the paper we add aggregate shocks to ε, α, κ, σ_A to try to match time-series regressions.

Don’t have strong guidance for modeling the shocks so try different things.

Again find only ε consistent with the data.
Implications of our Results

We think our results are interesting for 2 reasons

1. Direct evidence that micro data matters for aggregate pass-through
2. Our results suggest "uncertainty/volatility" shocks are probably not what explains countercyclical dispersion
1. Pass-Through Varies Across Time

- Our estimates:
 - Mid 90s: pass-through $\approx 7\%$
 - Trade Collapse: pass-through $\approx 44\%$
 - Miss this huge variation if just calculate average

![Graph showing level of pass-through over time]

Berger & Vavra
2. Uncertainty shocks vs time-varying responsiveness

- Existing literature on countercyclical dispersion (e.g. Bloom et al; Vavra; Arellano et al) has implicitly embraced $\sigma_A \uparrow$ as way to explain time series variation in dispersion.
- However, variation in ε also generates time variation in price dispersion.
- Our model results suggest only variation in ε can explain the time-series relationship between MRPT and XSD.
 - Our exchange rate shock let’s us identify time-varying responsiveness vs. heteroscedastic shocks.
Conclusions

- Empirically, aggregate pass-through moves strongly across time with microeconomic price change dispersion
 - Provides "model-free" evidence that micro data matters for aggregate dynamics
- Show that this arises naturally through variation in "responsiveness"
 - Other channels like volatility shocks don’t work
- Future work:
 - Thinking about what could drive "responsiveness" shocks
 - Thinking about ways to apply empirical strategy to alternative environments